skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Savage, Martha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Abstract Four decades of seismic reflection, onshore‐offshore and ocean‐bottom seismic data are integrated to constrain a high‐resolution 3‐D P‐wave velocity model of the Hikurangi subduction zone. Our model shows wavespeeds in the offshore forearc to be 0.5–1 km/s higher in south Hikurangi than in the central and northern segments (VP ≤ 4.5 km/s). Correlation with onshore geology and seismic reflection data sets suggest wavespeed variability in the overthrusting plate reflects the spatial distribution of Late Jurassic basement terranes. The crustal backstop is 25–35 km from the deformation front in south Hikurangi, but this distance abruptly increases to ∼105 km near Cape Turnagain. This change in backstop position coincides with the southern extent of shallow slow‐slip, most of which occurs updip of the backstop along the central and northern margin. These relationships suggest the crustal backstop may impact the down‐dip extent of shallow conditional stability on the megathrust and imply a high likelihood of near/trench‐breaching rupture in south Hikurangi. North of Cape Turnagain, the more landward position of the backstop, in conjunction with a possible reduction in the depth of the brittle ductile transition, reduces the down‐dip width of frictional locking between the southern (∼100 km) and central Hikurangi margin by up‐to 50%. Abrupt transitions in overthrusting plate structure are resolved near Cook Strait, Gisborne and across the northern Raukumara Peninsula, and appear related to tectonic inheritance and the evolution of the Hikurangi margin. Extremely low forearc wavespeeds resolved north of Gisborne played a key role in producing long durations of long‐period earthquake ground motions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. The M 7.8 Kaikoura earthquake occurred in the northern South Island of New Zealand on 3 Nov., 2016, involving the rupture of >20 faults. To understand the complexity of the Kaikoura earthquake, details of the fault ge- ometry, seismic velocity distribution, and stress field are necessary. We have undertaken seismic tomography along the c. 200 km length of the rupture zone. Data from both 51 temporary stations and 22 permanent (GeoNet) stations were collected from March 2011 to December 2018. The hypocenter of the Kaikoura earthquake and aftershocks near the Kekerengu fault locate along lineaments where seismic velocity changes laterally in the epicentral region. In the uppermost crust, lower velocities occur beneath the Emu Plain and Cape Campbell. A higher velocity region near Kaikoura may have acted as a barrier that prevented eastward rupture from the hypocenter and led to the complex fault distribution in this area. These complexities in the seismic velocity structure may relate to the multi-segment rupture character of the Kaikoura earthquake. Spatial correlations between rupture areas and high Vp/Vs suggest the involvement of overpressured fluid in the nucleation and propagation of rupture segments, which is also supported by the reactivation of unfavourably oriented strike-slip ruptures, many lying at c.70◦ to the regional maximum compressive stress trajectories. 
    more » « less
  3. Key Points Periodic pore fluid pressure perturbations on a rate‐strengthening fault induce slow slip events (SSEs) Source properties of induced SSEs vary with perturbation characteristics (length scale, amplitude, period) Model reproduces source properties of shallow Hikurangi SSEs, and duration and magnitude of SSEs in different subduction zones 
    more » « less